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THE MEAN DURATION TIME OF CARRIER-BORNE EPIDEMICS

by

Susan L. Conlon and L. Billard
The Florida State University

ABSTRACT

In this paper, the two-population model for a carrier-borne epidemic posed

by Bailey (The Mathematical Theory of Infectious Diseases and its Applications,
1975, p. 211) is formulated in a mathematically tractable manner. This model

reflects the epidemiology of diseases such as malaria, where the progress of the
digease depends on the interaction of a population of mosquitoes and a population
of humans. An expression for the mean duration time of the epidemic is obtained
and s computationally feasible algorithm is presented. Results of a study investi-

gating the consequences on the mean duration time of varying the infection and

removal rates in the two populations are given.

KEYWORDS: carrier-borne epidemic, malaria, mean duration time




In the theory of epidemic processes developed thus far, it has generally been
assumed, in the simplest case, that the population of interest is closed and may
be divided into sudb-populations whose members may be classified as susceptible or
infective. A slightly more complicated model introduces a third sub-population
of removals.

These simple models and the associated theory are inadequate in the study of
several diseases (malaria, for example) in which the spread of the disease by
carriers is a recognized phenomenon. A carrier is an individual who may transmit
the disease to other individuals, but who has no overt disease symptoms himself.

In the first significant work in this area, Weiss (1965) considers a closed
population of m susceptibles, into which n carriers are initially introduced.
There is no subsequent introduction of carriers, nor do any susceptibles become
carriers during the course of the epidemic. The carriers are detectable only by
the discovery of infected persons, and the epidemic progresses until either all
susceptibles become infected or all carriers are removed.

Several extensions to the Weiss model have been considered. Downton (1968)
allows for the further creation of carriers from the susceptibles during the
courge of the epidemic. Dietz and Downton (1968) relax the assumption of a closed
population and sllow for immigration of susceptibles and/or carriers. Pettigrew
and Weiss (1967) consider an epidemic involving two types of infectives (e.g.,
clinically infected and sub-clinically infected individuals) in an infinite popu-
lation of susceptibles. Applying results from branching processes, they obtain
equations for the mean number of clinically infected individuals and for the mean
number of sub-clinically infected individuals (carriers) at any time t.




Our concern, however, is not with the ome-population model of these
suthors, but rather with the two-population model as discussed by Bailey
(1975, p. 211). This permits consideration of such carrier-borne epidemics
as malaria, in which the carriers (mosquitoes) form a population distinct
from the host population (humans).

In Section 2 of this paper, we present a stochastic model for the two-
population carrier-borne epidemic. A theoretical expression for the mean
duration time is derived in Section 3 and a computationally feasible algorithm,
based on a recursion relation, is presented in Section 4. In the final section,

we present some numerical results for selected parameter values.




2. THE CARRIER-BORNE EPIDEMIC MODEL

Let sj(t). Ij(t), and Rj(t) denote the number of susceptibles, infectives,
and removals, respectively, in population j at time t. Population j is of fixed
i size

uj - sj(c) + I,(t) + R (t),

b b
j =1,2, for all t. The subscript j = 1 will refer to the host population and

i J = 2 will refer to the carrier population. Let Z(t) = (Sl(t).Il(t); Sz(t),Iz(t))

have realization z(t) = z = (81,11; 92,12). Then z takes values in the state

space

A= {z= (8)51,3 8p01,): 0 < g <SN,; 0<s, +1, <N,_, j=1,2}.

3oty = Ny Tt

Note that, since Rj(t) - Nj(t) - Sj(t) - IJ

of removed individuals in the definition of Z(t).

(t), we need not include the number

In a simplification of the epidemiology of malaria, a human susceptible
acquires infection through being bitten by an infective female mosquito. The

parasites released by the mosquito multiply in the liver of the human host, and

then settle in the red blood cells. Female mosquitoes, seeking the blood re-

quired for the development of their eggs, are then infected by biting an infected
|

human host. Thus, the probability that an additional human susceptible becomes |

infected during a short time interval is proportional to the number of human

susceptibles, the number of infected carriers, and the length of the time interval.
Similarly, the probability an additional carrier becomes infected during a short time
interval is proportional to the number of susceptible carriers, the number of infected

humans, and the length of the time interval. The removal rates are assumed linear.

|
i




Thus, the probabilities of permissible transitions in the interval (t,t+dt) are:

(1) P{ (31’11;82’12) b (81-1)11+1;82’12)} - Blslizdt + o(dt)’
(111) P{(sl,il;sz,iz) - (31,11;32-1.12+1)} = B,8,1,dt + o(dt),

(iv) P{(sl,il;ez,iz) > (31,11;32,12-1)} - yzizdt + o(dt),

and

) Pl(s;siy38,51,) + (8),1,38,,1,)) = 1-(B;s,1, + v;1; + Bys,1; + v,1,)de
+ o(dt),
where Bj and Yj’ the infection and removal rates, respectively, are assumed

constant.

3. MEAN DURATION TIME

Our epidemic process is said to be terminated whenever no more human sus-
ceptibles can acquire infection. This occurs when one or more of the following
subsets of A is entered, viz.,

El: the number of human susceptibles is zero,

Bzz the number of infectives in each population is zero,
and
!3: there are no susceptible or infective carriers (i.e., all carriers
have been removed).
Then, let

B=E UE, VE

1 2 3
where, from the definitions above,

‘1 o ((0:113.2012)}9




Bz - {('10033220)}9

and

E, = {(91.11;0,0)}.

3

Let the complement of the set B be

G = A-B.
Now, we are interested in Tm’ the mean time required for an epidemic which is
currently in state m € G to enter a state in the set B.
To derive expressions for the mean duration time, we consider our process
as a continuous time Markov chain with a one-dimensional state space. In order
to identify each vector in A by a natural number, we apply the transformation

k = k(sl’il;sz’iz)

- e(iz1+-n2+){sl(n+1)n/z + Ny, (N, 41)/2)

+N+12+N+1N N+1)/2 + 1 +

where
f Nj+-sj+ij,j-1,2; N=max (N1+,N2+) and e(x) = I(x > 0).
The transformed state space is

g A= {h: 1shs [N1;2] [NZ;Z], h integer}.

For example, the first nine states in AT. regardless of the population sizes,

- are:

£ k(z)

CONONMEWN
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We note that there is a unique one-to-one correspondence between the
vectors in A and the integers in AT' An algorithm to determine the vector

in A which corresponds to a given h € Ay is presented in Conlon (1977).

In this transformed state space, we define the transition probabilities

to be:
Pgn(t) = PLh(t) = n|h(o) = m]
= P[h(t + s) = n|h(s) = m]
= vmt + o(t),
Pgm(t) = 1 - vt +o(t),
where

v=Jv ,
m o s mn
n*n
and h(t) denotes the state the epidemic is in at time t. The hazard rates
for the epidemic process are
Blsli
v & 71119 n-kzak(sl’ 11-1; 32’ 12)
823211, nsk3-k(sl, il; 82—1, 12+1)

2° n-kl'k(81-1, 11+1; 82’ 12>

7212, n-k4=k(sl, 11; 8,9 12-1)

v- - 513112 + 7111 + 823211 + 1212.

A Markov chain is said to be uniformizable if sup ey < ®, Since
m

our chain is finite, uniformizability follows immediately. Keilson (1974)
showed that the original process (our uniformizable chain) and a discrete-time
process constructed by randomly selecting the number of transitions according
to a Poisson process with parameter vo have state probabilities identical

in law.




For some v 2 vo, let

vmlv, mzn

" 1-vu/v.m-n,

and
L (‘m) R

Then, following Keilson (1974), we can derive the consistency relation

_g'- (r) edfroa 11,

v "G “v,C (3.1)

wvhere Av c is the matrix Av restricted to the good states.
?

To illustrate the theory, let us consider the first nine states of an epi-

demic, as presented above. If we choose 81-0.1. 32-0.2. 71-0.2, and 72-0.2.
then the v, are given by

n]lz 3 4 5 6 7 8 ]

V- l o 0.2 o 002 0" 0.5 0 003 0 b

Thus, v = max v = 0.4. Let v=1. Then the matrix Av-l is

~1 o

0 0 0 0 0 0 O]

2 .8 06 ¢ 8 b o 0 ©

0 0 1. 0 0 0 0 O0 O

.2 0 0 .8 0 0 0 0 O

Aj=| 0.2 0.2 .6 0 0 0 0
0 &4 @ .2 4 0 O° @

0 0 0 0 0 0 1 0 O

6 0 0 0 .1 0 .2 .7 O
. 0 0 0 0 0 0 0 O 1]

We observe that G consists of the state corresponding to h=8 only. Thus, ‘1.c 7,

a scalar, and the consistency equation (3.1) gives the mean duration time of an
epidemic which is currently in state (1,0;0,1):

T ———




Tg = 1-0.7)"1.1 = 3.3,

| We note that the choice of v 2 v, is arbitrary. If, for example, we choose

v = 2, we have

! : Tg = 3(-.85"11 = 3.3.

In geaeral, when more good states are considered, the dimension of Av ¢
’

is quite large, and the inversion of [I, - A_ .] is cumbersome. For example,
G v,G

in the situation where N1+ = N2+ = 8, there are 2025 states in the transformed

state space AT’ with 505 states in B and 1520 states in G. A computationally

feasible algorithm is required.

4. A RECURSION APPROACH

In the previous section, we presented the consistency equation for Tm,
together with the relevant theoretical justifications. We also noted potential
difficulties in actually computing values for Tm when the population sizes are

not small. We comment here on a computationally feasible (and easily program-

mable) approach to the calculation of Tn'

We observe that the mean duration time of our epidemic process at any
given state can be decomposed into the sum of the following components: the
average time spent in the given state, and the weighted mean duration times
of the epidemic in those states to which the epidemic may proceed in one step
from the given state. The weights are the hazards of each permissible one-

step transition from the given state. Thus, 1if we let T(sl,il;sz,iz) denote




- B =

the mean duration time of an epidemic which is currently in state (51.11;32,12),
we may write the following recursion relation:
T(’l'il;SZ’iz)

1 %
- v(sl,j.l;sz,:l.z) E + 318112 T(sl-lpil‘.'l,szpiz)

+ Ylil T(slg 11-1;82’12)

+ 7212 T(sl,il;sz,iz-li],
where v(sl.il;sz,iz) = Bysyd, + .1, + Bys,d, + Ypi,e

A computer program, based on this recursion relation, has been written to
calculate the ﬁean duration time at any state in the epidemic process. It uses
the counting system described in Section 3 and has the desirable feature that
the calculation of the mean duration time of an epidemic in state h requires the
computation of mean duration times for only those states j, where § < h. [A

Fortran listing of the program is available from the first author on request.]

5. SOME NUMERICAL RESULTS

In this section we present the results cf an investigation of the
relation between the mean duration time and the quantities it depends on, namely,
the infection and removal rates and the numbers of susceptibles and infectives
in the two populations. Our investigation restricts attention to epidemics
starting in a state of the form (01.1;92.1), i.e., with one initial infective in

each population.
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We first note that the mean duration time for an epidemic starting in

state (81,11;82,12) with parameter vector (81,82;71,72) will be c times larger

than the mean duration time for an epidemic starting in the same state with

parameter vector (cBl,cBZ;cyl,cyz), for ¢ > 0. Hence, only one parameter

vector in the family {(csl,csz;cyl,cyz), ¢ > 0} need be examined.

For parameter vectors of the form (06,0;0,8), the mean duration time in-

creases from its initial value at s, =s, = ] to a maximum at 8 = s, = 3 of
1.52 times the initial value and then decreases to a value at s1 = 52 = 8

which is 1.05 times the initial value, as illustrated in Figure 1.

[Figure 1 about here.]

To determine why the mean duration time increases and then decreases
as s8; = s, increases, the parameter vector (0.5,0.0;0.0,0.0) was investi-

gated and the results are presented in Figure 2.

[Figure 2 about here.]
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MEAN DURATION TIME
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Figure 1. Mean duration time for epidemics starting in state (ll. 1; s, 1) with

parameter vector (0.5, 0.5; 0.5, 0.5).
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Figure 2. Mean duration time for epidemics starting in state (sl, 1 8,5, 1) with

parameter vector (0.5, 0.0; 0.0, 0.0).
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For this parameter configuration, the epidemic can end only 1if 8, = 0,

since any existing infectives are not removed. The consequence of this is

that the mean duration time will increase as 8, - 32 increases since the

state (k,1;k,1) decays into (k-1,2;k,1), which has the same mean duration
time as (k-1,1;k-1,1) for these parameters.

Examination of Figure 3, which presents the mean duration time for an
epidemic with parameter vector (0.5,0.5;0.0,0.0), indicates that allowing
susceptible carriers to become infected (32 > 0) results in a decrease in

the mean duration time, for sufficiently large s, = 8,» rather than the con-

1

tinued increase as in Figure 2.
[Figure 3 about here.]

With this parameter configuration, the epidemic may terminate only 1if

8 = 0. The decrease in mean duration time is due to the fact that the rate of

transitions of type (1) is 818112. Since 82 > 0, 12 increases and the transition

rate tends to be larger than it is in the situation in Figure 2, where 12 remains

constant. Allowing nonzero removal rates does not affect the general shape of
the mean duration time curve, as can be seen by comparing Figures 1 and 3.

Thus, the increase and subsequent decrease in the mean duration time ob-

served in Figure 1 can be explained as follows. An epidemic starting in state

(1,1;1,1) with parameter vector (0,6;0,0) is most likely to terminate because 8,

becomes zero. As another host and carrier are added, the time required for s

to decrease to zero increases and the epidemic lasts longer. However, the

addition of the fourth individuals causes an increase in the hazard rates,
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Figure 3. Mean duration time for epidemics starting in state (31. 1; 8, 1) with

parameter vector (0.5, 0.5; 0.0, 0.0).
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vhich more than offsets the additional time required to remove the fourth
susceptible host. Thus, the mean duration time of an epidemic in state

(4,1;4,1) 1s less than that of an epidemic in state (3,1;3,1).
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